Like Frankenstein, Marc Miskin’s robots initially lie motionless. Then their limbs jerk to life.
But these robots are the size of a speck of dust. Thousands fit side-by-side on a single silicon wafer similar to those used for computer chips, and, like Frankenstein coming to life, they pull themselves free and start crawling.
Dr. Miskin, a professor of electrical and systems engineering at the University of Pennsylvania, imagines a wealth of uses for these microbots, which are about the size of a cell. They could crawl into cellphone batteries and clean and rejuvenate them. They might be a boon to neural scientists, burrowing into the brain to measure nerve signals. Millions of them in a petri dish could be used to test ideas in networking and communications.
The research, presented at a meeting of the American Physical Society in Boston in March, is the latest step in the vision that physicist Richard Feynman laid out in 1959 in a lecture, “There’s Plenty of Room at the Bottom,” about how information could be packed into atomic-scale structures and molecular machines could transform technology.
Over the past 50 years, Feynman’s predictions about information storage have largely come to fruition. The second goal of this is the miniaturization of machines.
While working in the laboratories of Dr. McEuen and Itai Cohen, another Cornell physicist, Dr. Miskin developed a technique to put layers of platinum and titanium on a silicon wafer. When an electrical voltage is applied, the platinum contracts while the titanium remains rigid, and the flat surface bends. The bending became the motor that moves the limbs of the robots, each about a hundred atoms thick.
The idea is not new. Researchers like Kris Pister of the University of California, Berkeley, have for decades talked of “smart dust,” minuscule sensors that could report on conditions in the environment. But in developing practical versions, the smart dust became larger, more like smart gravel, in order to fit in batteries.
Dr. Miskin worked around the power conundrum by leaving out the batteries. Instead, he powers the robots by shining lasers on tiny solar panels on their backs.
Because the robots are made using conventional silicon technology, incorporating sensors to measure temperature or electrical pulses should be straightforward.
Read the entire and original article at The New York Times.